/** * Copyright (c) 2014 - 2020, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /** @file * * @defgroup ble_sdk_uart_over_ble_main main.c * @{ * @ingroup ble_sdk_app_nus_eval * @brief UART over BLE application main file. * * This file contains the source code for a sample application that uses the Nordic UART service. * This application uses the @ref srvlib_conn_params module. */ #include #include #include "nordic_common.h" #include "nrf.h" #include "ble_hci.h" #include "ble_advdata.h" #include "ble_advertising.h" #include "ble_conn_params.h" #include "nrf_sdh.h" #include "nrf_sdh_soc.h" #include "nrf_sdh_ble.h" #include "nrf_ble_gatt.h" #include "nrf_ble_qwr.h" #include "app_timer.h" #include "ble_nus.h" #include "app_uart.h" #include "app_util_platform.h" #include "bsp_btn_ble.h" #include "nrf_pwr_mgmt.h" #include "user_Sleep.h" #include "twi_master.h" #include "mpu6050.h" #include "footPDR.h" #include "MSE5611.h" #include "nrf_drv_timer.h" #include "nrf_drv_gpiote.h" #include "nrf_drv_saadc.h" #include "nrf_saadc.h" #include "nrf_drv_timer.h" #include "app_timer.h" #include "main.h" #include "app.h" //#include "mpu6050.h" //#include "inv_mpu.h" //#include "inv_mpu_dmp_motion_driver.h" //#include "imu.h" //#include "mpu9250.h" #include "nrf_delay.h" #if defined (UART_PRESENT) #include "nrf_uart.h" #endif #if defined (UARTE_PRESENT) #include "nrf_uarte.h" #endif #include "nrf_log.h" #include "nrf_log_ctrl.h" #include "nrf_log_default_backends.h" #define PIN_OUT 16 #define APP_BLE_CONN_CFG_TAG 1 /**< A tag identifying the SoftDevice BLE configuration. */ #define DEVICE_NAME "SH_chen" /**< Name of device. Will be included in the advertising data. */ #define NUS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN /**< UUID type for the Nordic UART Service (vendor specific). */ #define APP_BLE_OBSERVER_PRIO 3 /**< Application's BLE observer priority. You shouldn't need to modify this value. */ #define APP_ADV_INTERVAL 64 /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */ #define APP_ADV_DURATION 18000 /**< The advertising duration (180 seconds) in units of 10 milliseconds. */ #define MIN_CONN_INTERVAL MSEC_TO_UNITS(20, UNIT_1_25_MS) /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */ #define MAX_CONN_INTERVAL MSEC_TO_UNITS(75, UNIT_1_25_MS) /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */ #define SLAVE_LATENCY 0 /**< Slave latency. */ #define CONN_SUP_TIMEOUT MSEC_TO_UNITS(4000, UNIT_10_MS) /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */ #define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000) /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */ #define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */ #define MAX_CONN_PARAMS_UPDATE_COUNT 3 /**< Number of attempts before giving up the connection parameter negotiation. */ #define DEAD_BEEF 0xDEADBEEF /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */ #define UART_TX_BUF_SIZE 256 /**< UART TX buffer size. */ #define UART_RX_BUF_SIZE 256 /**< UART RX buffer size. */ BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT); /**< BLE NUS service instance. */ NRF_BLE_GATT_DEF(m_gatt); /**< GATT module instance. */ NRF_BLE_QWR_DEF(m_qwr); /**< Context for the Queued Write module.*/ BLE_ADVERTISING_DEF(m_advertising); /**< Advertising module instance. */ static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID; /**< Handle of the current connection. */ static uint16_t m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3; /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */ static ble_uuid_t m_adv_uuids[] = /**< Universally unique service identifier. */ { {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE} }; /**@brief Function for assert macro callback. * * @details This function will be called in case of an assert in the SoftDevice. * * @warning This handler is an example only and does not fit a final product. You need to analyse * how your product is supposed to react in case of Assert. * @warning On assert from the SoftDevice, the system can only recover on reset. * * @param[in] line_num Line number of the failing ASSERT call. * @param[in] p_file_name File name of the failing ASSERT call. */ void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name) { app_error_handler(DEAD_BEEF, line_num, p_file_name); } /**@brief Function for initializing the timer module. */ static void timers_init(void) { ret_code_t err_code = app_timer_init(); APP_ERROR_CHECK(err_code); } /**@brief Function for the GAP initialization. * * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of * the device. It also sets the permissions and appearance. */ static void gap_params_init(void) { uint32_t err_code; ble_gap_addr_t m_my_addr; ble_gap_conn_params_t gap_conn_params; ble_gap_conn_sec_mode_t sec_mode; char BleReallyName[30]={0}; BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode); err_code = sd_ble_gap_addr_get(&m_my_addr); APP_ERROR_CHECK(err_code); //sprintf(BleReallyName,"%s_%02x%02x%02x",DEVICE_NAME,m_my_addr.addr[2],m_my_addr.addr[1],m_my_addr.addr[0]); err_code = sd_ble_gap_device_name_set(&sec_mode, (const uint8_t *) DEVICE_NAME, strlen(DEVICE_NAME)); APP_ERROR_CHECK(err_code); memset(&gap_conn_params, 0, sizeof(gap_conn_params)); gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL; gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL; gap_conn_params.slave_latency = SLAVE_LATENCY; gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT; err_code = sd_ble_gap_ppcp_set(&gap_conn_params); APP_ERROR_CHECK(err_code); } /**@brief Function for handling Queued Write Module errors. * * @details A pointer to this function will be passed to each service which may need to inform the * application about an error. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void nrf_qwr_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for handling the data from the Nordic UART Service. * * @details This function will process the data received from the Nordic UART BLE Service and send * it to the UART module. * * @param[in] p_evt Nordic UART Service event. */ /**@snippet [Handling the data received over BLE] */ static void nus_data_handler(ble_nus_evt_t * p_evt) { if (p_evt->type == BLE_NUS_EVT_RX_DATA) { uint32_t err_code; // printf("Received data from BLE NUS. Writing data on UART."); NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length); ble_phone_command_callback(p_evt->params.rx_data.p_data,p_evt->params.rx_data.length); for (uint32_t i = 0; i < p_evt->params.rx_data.length; i++) { do { err_code = app_uart_put(p_evt->params.rx_data.p_data[i]); if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY)) { // printf("Failed receiving NUS message. Error 0x%x. ", err_code); APP_ERROR_CHECK(err_code); } } while (err_code == NRF_ERROR_BUSY); } // if (p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 1] == '\r') // { // while (app_uart_put('\n') == NRF_ERROR_BUSY); // } } } /**@snippet [Handling the data received over BLE] */ /**@brief Function for initializing services that will be used by the application. */ static void services_init(void) { uint32_t err_code; ble_nus_init_t nus_init; nrf_ble_qwr_init_t qwr_init = {0}; // Initialize Queued Write Module. qwr_init.error_handler = nrf_qwr_error_handler; err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init); APP_ERROR_CHECK(err_code); // Initialize NUS. memset(&nus_init, 0, sizeof(nus_init)); nus_init.data_handler = nus_data_handler; err_code = ble_nus_init(&m_nus, &nus_init); APP_ERROR_CHECK(err_code); } /**@brief Function for handling an event from the Connection Parameters Module. * * @details This function will be called for all events in the Connection Parameters Module * which are passed to the application. * * @note All this function does is to disconnect. This could have been done by simply setting * the disconnect_on_fail config parameter, but instead we use the event handler * mechanism to demonstrate its use. * * @param[in] p_evt Event received from the Connection Parameters Module. */ static void on_conn_params_evt(ble_conn_params_evt_t * p_evt) { uint32_t err_code; if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED) { err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE); APP_ERROR_CHECK(err_code); } } /**@brief Function for handling errors from the Connection Parameters module. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void conn_params_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for initializing the Connection Parameters module. */ static void conn_params_init(void) { uint32_t err_code; ble_conn_params_init_t cp_init; memset(&cp_init, 0, sizeof(cp_init)); cp_init.p_conn_params = NULL; cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY; cp_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY; cp_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT; cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID; cp_init.disconnect_on_fail = false; cp_init.evt_handler = on_conn_params_evt; cp_init.error_handler = conn_params_error_handler; err_code = ble_conn_params_init(&cp_init); APP_ERROR_CHECK(err_code); } /**@brief Function for putting the chip into sleep mode. * * @note This function will not return. */ static void sleep_mode_enter(void) { uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); // Prepare wakeup buttons. err_code = bsp_btn_ble_sleep_mode_prepare(); APP_ERROR_CHECK(err_code); // Go to system-off mode (this function will not return; wakeup will cause a reset). err_code = sd_power_system_off(); APP_ERROR_CHECK(err_code); } /**@brief Function for starting advertising. */ void advertising_start(void) { uint32_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST); APP_ERROR_CHECK(err_code); } /**@brief Function for handling advertising events. * * @details This function will be called for advertising events which are passed to the application. * * @param[in] ble_adv_evt Advertising event. */ static void on_adv_evt(ble_adv_evt_t ble_adv_evt) { uint32_t err_code; switch (ble_adv_evt) { case BLE_ADV_EVT_FAST: err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING); APP_ERROR_CHECK(err_code); break; case BLE_ADV_EVT_IDLE: //advertising_start(); //low_power_in(); break; default: break; } } /**@brief Function for handling BLE events. * * @param[in] p_ble_evt Bluetooth stack event. * @param[in] p_context Unused. */ static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context) { uint32_t err_code; switch (p_ble_evt->header.evt_id) { case BLE_GAP_EVT_CONNECTED: printf("Connected\r\n"); nrf_drv_gpiote_out_clear(PIN_OUT); err_code = bsp_indication_set(BSP_INDICATE_CONNECTED); APP_ERROR_CHECK(err_code); m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle; err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle); APP_ERROR_CHECK(err_code); break; case BLE_GAP_EVT_DISCONNECTED: printf("Disconnected\r\n"); nrf_drv_gpiote_out_set(PIN_OUT); // LED indication will be changed when advertising starts. m_conn_handle = BLE_CONN_HANDLE_INVALID; break; case BLE_GAP_EVT_PHY_UPDATE_REQUEST: { printf("PHY update request."); ble_gap_phys_t const phys = { .rx_phys = BLE_GAP_PHY_AUTO, .tx_phys = BLE_GAP_PHY_AUTO, }; err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys); APP_ERROR_CHECK(err_code); } break; case BLE_GAP_EVT_SEC_PARAMS_REQUEST: // Pairing not supported err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_SYS_ATTR_MISSING: // No system attributes have been stored. err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0); APP_ERROR_CHECK(err_code); break; case BLE_GATTC_EVT_TIMEOUT: // Disconnect on GATT Client timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_TIMEOUT: // Disconnect on GATT Server timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; default: // No implementation needed. break; } } /**@brief Function for the SoftDevice initialization. * * @details This function initializes the SoftDevice and the BLE event interrupt. */ static void ble_stack_init(void) { ret_code_t err_code; err_code = nrf_sdh_enable_request(); APP_ERROR_CHECK(err_code); // Configure the BLE stack using the default settings. // Fetch the start address of the application RAM. uint32_t ram_start = 0; err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start); APP_ERROR_CHECK(err_code); // Enable BLE stack. err_code = nrf_sdh_ble_enable(&ram_start); APP_ERROR_CHECK(err_code); // Register a handler for BLE events. NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL); } /**@brief Function for handling events from the GATT library. */ void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt) { if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED)) { m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH; printf("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len); } printf("ATT MTU exchange completed. central 0x%x peripheral 0x%x", p_gatt->att_mtu_desired_central, p_gatt->att_mtu_desired_periph); } /**@brief Function for initializing the GATT library. */ void gatt_init(void) { ret_code_t err_code; err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler); APP_ERROR_CHECK(err_code); err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE); APP_ERROR_CHECK(err_code); } /**@brief Function for handling events from the BSP module. * * @param[in] event Event generated by button press. */ void bsp_event_handler(bsp_event_t event) { uint32_t err_code; switch (event) { case BSP_EVENT_SLEEP: printf("BSP_EVENT_SLEEP \r\n"); // sleep_mode_enter(); advertising_start(); break; case BSP_EVENT_DISCONNECT: printf("BSP_EVENT_DISCONNECT \r\n"); err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } break; case BSP_EVENT_WHITELIST_OFF: printf("BSP_EVENT_WHITELIST_OFF \r\n"); if (m_conn_handle == BLE_CONN_HANDLE_INVALID) { err_code = ble_advertising_restart_without_whitelist(&m_advertising); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } } break; case BSP_EVENT_KEY_0: printf("1"); break; default: break; } } /**@brief Function for handling app_uart events. * * @details This function will receive a single character from the app_uart module and append it to * a string. The string will be be sent over BLE when the last character received was a * 'new line' '\n' (hex 0x0A) or if the string has reached the maximum data length. */ /**@snippet [Handling the data received over UART] */ void uart_event_handle(app_uart_evt_t * p_event) { static uint8_t state = 0; static uint8_t data_array[BLE_NUS_MAX_DATA_LEN]; static uint8_t index = 0; static uint8_t len = 0; uint8_t i; uint32_t err_code; int rev=-1; switch (p_event->evt_type) { case APP_UART_DATA_READY: UNUSED_VARIABLE(app_uart_get(&data_array[index])); index++; switch(state){ case 0:{ if(index>=3){ // for(i=0;i=len){ uint8_t ver = 0; for(i=0;idata.error_communication); break; case APP_UART_FIFO_ERROR: printf("APP_UART_FIFO_ERROR\r\n"); APP_ERROR_HANDLER(p_event->data.error_code); break; default: break; } } int Send_bytes_to_Ble(unsigned char *bytes,int len) { uint32_t err_code; do{ uint16_t len_send = len; err_code = ble_nus_data_send(&m_nus, bytes, &len_send, m_conn_handle); if ((err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_RESOURCES) && (err_code != NRF_ERROR_NOT_FOUND)){ APP_ERROR_CHECK(err_code); } } while (err_code == NRF_ERROR_RESOURCES); } /**@snippet [Handling the data received over UART] */ /**@brief Function for initializing the UART module. */ /**@snippet [UART Initialization] */ void uart_init(void) { uint32_t err_code; app_uart_comm_params_t const comm_params = { .rx_pin_no = RX_PIN_NUMBER, .tx_pin_no = TX_PIN_NUMBER, .rts_pin_no = RTS_PIN_NUMBER, .cts_pin_no = CTS_PIN_NUMBER, .flow_control = APP_UART_FLOW_CONTROL_DISABLED, .use_parity = false, #if defined (UART_PRESENT) .baud_rate = NRF_UART_BAUDRATE_115200 #else .baud_rate = NRF_UARTE_BAUDRATE_115200 #endif }; APP_UART_FIFO_INIT(&comm_params, UART_RX_BUF_SIZE, UART_TX_BUF_SIZE, uart_event_handle, APP_IRQ_PRIORITY_LOWEST, err_code); APP_ERROR_CHECK(err_code); } /**@snippet [UART Initialization] */ /**@brief Function for initializing the Advertising functionality. */ static void advertising_init(void) { uint32_t err_code; ble_advertising_init_t init; memset(&init, 0, sizeof(init)); init.advdata.name_type = BLE_ADVDATA_FULL_NAME; init.advdata.include_appearance = false; init.advdata.flags = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE; init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]); init.srdata.uuids_complete.p_uuids = m_adv_uuids; init.config.ble_adv_fast_enabled = true; init.config.ble_adv_fast_interval = APP_ADV_INTERVAL; init.config.ble_adv_fast_timeout = APP_ADV_DURATION; init.evt_handler = on_adv_evt; err_code = ble_advertising_init(&m_advertising, &init); APP_ERROR_CHECK(err_code); ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG); } /**@brief Function for initializing the nrf log module. */ static void log_init(void) { ret_code_t err_code = NRF_LOG_INIT(NULL); APP_ERROR_CHECK(err_code); NRF_LOG_DEFAULT_BACKENDS_INIT(); } /**@brief Function for initializing power management. */ static void power_management_init(void) { ret_code_t err_code; err_code = nrf_pwr_mgmt_init(); APP_ERROR_CHECK(err_code); } /**@brief Function for handling the idle state (main loop). * * @details If there is no pending log operation, then sleep until next the next event occurs. */static void idle_state_handle(void) { if (NRF_LOG_PROCESS() == false) { nrf_pwr_mgmt_run(); } } /***********************************************************************************************/ void send_to_ble_nus(uint8_t index,uint8_t cmd,uint8_t* dat,uint8_t datLen) { // uint32_t err_code; uint8_t buf[255]; uint16_t Len = datLen+8; uint16_t L=0; uint8_t i; uint8_t ver = 0; if(Len>255) return; buf[L++] = 0xAA; ver += 0xAA; //帧头 buf[L++] = Len; ver += Len; //长度 buf[L++] = ~Len; ver += (~Len);//长度反码 buf[L++] = cmd; ver += cmd; //命令 for(i=0;i>24); buf[L++] = (uint8_t)(temp>>16); buf[L++] = (uint8_t)(temp>>8); buf[L++] = (uint8_t)(temp>>0); temp = (int32_t)(acc_val[1]*1000); buf[L++] = (uint8_t)(temp>>24); buf[L++] = (uint8_t)(temp>>16); buf[L++] = (uint8_t)(temp>>8); buf[L++] = (uint8_t)(temp>>0); temp = (int32_t)(acc_val[2]*1000); buf[L++] = (uint8_t)(temp>>24); buf[L++] = (uint8_t)(temp>>16); buf[L++] = (uint8_t)(temp>>8); buf[L++] = (uint8_t)(temp>>0); buf[L++] = (uint8_t)(press_val>>24); buf[L++] = (uint8_t)(press_val>>16); buf[L++] = (uint8_t)(press_val>>8); buf[L++] = (uint8_t)(press_val>>0); buf[L++] = (uint8_t)(signal_out[0]>>24); buf[L++] = (uint8_t)(signal_out[0]>>16); buf[L++] = (uint8_t)(signal_out[0]>>8); buf[L++] = (uint8_t)(signal_out[0]>>0); buf[L++] = (uint8_t)(signal_out[1]>>24); buf[L++] = (uint8_t)(signal_out[1]>>16); buf[L++] = (uint8_t)(signal_out[1]>>8); buf[L++] = (uint8_t)(signal_out[1]>>0); buf[L++] = (uint8_t)(signal_out[2]>>24); buf[L++] = (uint8_t)(signal_out[2]>>16); buf[L++] = (uint8_t)(signal_out[2]>>8); buf[L++] = (uint8_t)(signal_out[2]>>0); send_to_ble_nus(DEX_NUM,CMD_HEART,buf,L); } void send_ble_data_int(short* acc_val,short* gry_val,int32_t press_val,int32_t* signal_out,float* signal_float) { uint8_t buf[255]; uint8_t L=0; int32_t temp; buf[L++] = (uint8_t)(acc_val[0]>>8); buf[L++] = (uint8_t)(acc_val[0]>>0); buf[L++] = (uint8_t)(acc_val[1]>>8); buf[L++] = (uint8_t)(acc_val[1]>>0); buf[L++] = (uint8_t)(acc_val[2]>>8); buf[L++] = (uint8_t)(acc_val[2]>>0); buf[L++] = (uint8_t)(gry_val[0]>>8); buf[L++] = (uint8_t)(gry_val[0]>>0); buf[L++] = (uint8_t)(gry_val[1]>>8); buf[L++] = (uint8_t)(gry_val[1]>>0); buf[L++] = (uint8_t)(gry_val[2]>>8); buf[L++] = (uint8_t)(gry_val[2]>>0); buf[L++] = (uint8_t)(press_val>>24); buf[L++] = (uint8_t)(press_val>>16); buf[L++] = (uint8_t)(press_val>>8); buf[L++] = (uint8_t)(press_val>>0); buf[L++] = (uint8_t)(signal_out[0]>>24); buf[L++] = (uint8_t)(signal_out[0]>>16); buf[L++] = (uint8_t)(signal_out[0]>>8); buf[L++] = (uint8_t)(signal_out[0]>>0); buf[L++] = (uint8_t)(signal_out[1]>>24); buf[L++] = (uint8_t)(signal_out[1]>>16); buf[L++] = (uint8_t)(signal_out[1]>>8); buf[L++] = (uint8_t)(signal_out[1]>>0); buf[L++] = (uint8_t)(signal_out[2]>>24); buf[L++] = (uint8_t)(signal_out[2]>>8); buf[L++] = (uint8_t)(signal_out[2]>>0); buf[L++] = (uint8_t)(signal_out[3]>>24); buf[L++] = (uint8_t)(signal_out[3]>>16); buf[L++] = (uint8_t)(signal_out[3]>>8); buf[L++] = (uint8_t)(signal_out[3]>>0); temp = (int32_t)signal_float[0]; buf[L++] = (uint8_t)(temp>>24); buf[L++] = (uint8_t)(temp>>16); buf[L++] = (uint8_t)(temp>>8); buf[L++] = (uint8_t)(temp>>0); temp = (int32_t)signal_float[1]; buf[L++] = (uint8_t)(temp>>24); buf[L++] = (uint8_t)(temp>>16); buf[L++] = (uint8_t)(temp>>8); buf[L++] = (uint8_t)(temp>>0); send_to_ble_nus(DEX_NUM,CMD_HEART,buf,L); } void send_ble_data_press(int32_t press_val,short ts) { uint8_t buf[32]; uint8_t L=0; buf[L++] = (uint8_t)(press_val>>24); buf[L++] = (uint8_t)(press_val>>16); buf[L++] = (uint8_t)(press_val>>8); buf[L++] = (uint8_t)(press_val>>0); buf[L++] = (uint8_t)(ts>>8); buf[L++] = (uint8_t)(ts>>0); send_to_ble_nus(DEX_NUM,CMD_HEART,buf,L); } static uint16_t cmd_ntimes[NUMBERS_OF_MOTION]; static uint16_t cmd_timestamp[NUMBERS_OF_MOTION]; void send_ble_motion_process(void) { uint8_t buf[255]; uint8_t L=0; int i; for(i=0;i0){ cmd_ntimes[i]--; buf[L++] = (uint8_t)(i>>0); buf[L++] = (uint8_t)(cmd_timestamp[i]>>8); buf[L++] = (uint8_t)(cmd_timestamp[i]>>0); send_to_ble_nus(DEX_NUM,CMD_MOTION,buf,L); } } } void send_ble_motion(uint8_t motion,uint16_t ts) { if(motion>=NUMBERS_OF_MOTION) return; cmd_ntimes[motion] = 10; cmd_timestamp[motion] = ts; } /** * @brief 卡尔曼滤波函数 * @param None * @retval None */ float kalmanFilter_x(float new_zk) { static float preBestResult=0; static float p=10.0,q=0.000001,r=0.0000101,kg=0; p=p+q; kg=p/(p+r); new_zk=preBestResult+(kg*(new_zk-preBestResult)); p=(1-kg)*p; preBestResult=new_zk; return new_zk; } /** * @brief 卡尔曼滤波函数 * @param None * @retval None */ float kalmanFilter_y(float new_zk) { static float preBestResult=0; static float p=10.0,q=0.000001,r=0.0000101,kg=0; p=p+q; kg=p/(p+r); new_zk=preBestResult+(kg*(new_zk-preBestResult)); p=(1-kg)*p; preBestResult=new_zk; return new_zk; } /** * @brief 卡尔曼滤波函数 * @param None * @retval None */ float kalmanFilter_z(float new_zk) { static float preBestResult=0; static float p=10.0,q=0.000001,r=0.0000101,kg=0; p=p+q; kg=p/(p+r); new_zk=preBestResult+(kg*(new_zk-preBestResult)); p=(1-kg)*p; preBestResult=new_zk; return new_zk; } float kalmanFilter_f(float new_zk) { static float preBestResult=0; static float p=10.0,q=0.000001,r=0.0000101,kg=0; p=p+q; kg=p/(p+r); new_zk=preBestResult+(kg*(new_zk-preBestResult)); p=(1-kg)*p; preBestResult=new_zk; return new_zk; } /*************************************************************************/ #ifdef BSP_BUTTON_0 #define PIN_IN BSP_BUTTON_0 #endif #ifndef PIN_IN #error "Please indicate input pin" #endif nrf_saadc_value_t saadc_val[2]; short gyro[3], accel[3]; float quat[4]; uint16_t timestamp_ble = 0; int32_t out[7]; short adc_send[4]; //#define filter_mid_averange_number 10 void bubble_sort(short* a, short n) { short i,j,temp; for(i=0;ii;j--){ if(a[j]>1]; } short filter_mid(short val) { static short buf[filter_mid_averange_number]; static int dex = 0; buf[dex] = val; if(++dex>=filter_mid_averange_number) dex = 0; return filter_mid_averange(buf); } short filter_mid_slide(short val) { static short buf[filter_mid_averange_number] = {0}; static int dex = 0; static int32_t sum = 0; sum = sum - buf[dex]; buf[dex] = val; if(++dex>=filter_mid_averange_number) dex = 0; sum += val; return sum/filter_mid_averange_number; } short filter_adc1(short val) { static short buf[filter_mid_averange_number]; static int dex = 0; buf[dex] = val; if(++dex>=filter_mid_averange_number) dex = 0; return filter_mid_slide(filter_mid_averange(buf)); } short filter_adc1_slide(short val) { #define filter_adc1_slide_num 5 static short buf[filter_adc1_slide_num] = {0}; static int dex = 0; static int32_t sum = 0; sum = sum - buf[dex]; buf[dex] = val; if(++dex>=filter_adc1_slide_num) dex = 0; sum += val; return sum/filter_adc1_slide_num; } short filter_adc1_squat_slide(short val) { #define filter_adc1_d_slide_num 10 static short buf[filter_adc1_d_slide_num] = {0}; static int dex = 0; static int32_t sum = 0; sum = sum - buf[dex]; buf[dex] = val; if(++dex>=filter_adc1_d_slide_num) dex = 0; sum += val; return sum/filter_adc1_d_slide_num; } short filter_accy_slide(short val) { #define filter_accy_slide_number 5 static short buf[filter_accy_slide_number] = {0}; static int dex = 0; static int32_t sum = 0; sum = sum - buf[dex]; buf[dex] = val; if(++dex>=filter_accy_slide_number) dex = 0; sum += val; return sum/filter_accy_slide_number; } short filter_accz_slide(short val) { #define filter_accz_slide_number 5 static short buf[filter_accz_slide_number] = {0}; static int dex = 0; static int32_t sum = 0; sum = sum - buf[dex]; buf[dex] = val; if(++dex>=filter_accz_slide_number) dex = 0; sum += val; return sum/filter_accz_slide_number; } float quatdianc(const float* Q,const float* P) { float result; result=P[0]*Q[0] + P[1]*Q[1] + P[2]*Q[2] + P[3]*Q[3]; return result; } void quatconj2(const float *Quat,float *out) { out[0]= Quat[0]; out[1]=-Quat[1]; out[2]=-Quat[2]; out[3]=-Quat[3]; } //???? void quatinv(const float* Q,float *quatinvQ) { float mod; float temp[4]; quatconj2(Q,temp); mod=quatdianc(temp,temp); quatinvQ[0]=temp[0]/mod; quatinvQ[1]=temp[1]/mod; quatinvQ[2]=temp[2]/mod; quatinvQ[3]=temp[3]/mod; } void quatmultiply(const float * Q,const float * P,float *QP) { QP[0]=P[0]*Q[0] - P[1]*Q[1] - P[2]*Q[2] - P[3]*Q[3]; QP[1]=P[0]*Q[1] + P[1]*Q[0] + P[2]*Q[3] - P[3]*Q[2]; QP[2]=P[0]*Q[2] + P[2]*Q[0] + P[3]*Q[1] - P[1]*Q[3]; QP[3]=P[0]*Q[3] + P[3]*Q[0] + P[1]*Q[2] - P[2]*Q[1]; } void quatrotate(float* sour_pion,const float* Q,float *out_poin) { float Quaternion_p[4]; float temp[4]; float temp1[4]; float temp2[4]; Quaternion_p[0]=0; Quaternion_p[1]=sour_pion[0]; Quaternion_p[2]=sour_pion[1]; Quaternion_p[3]=sour_pion[2]; quatmultiply(Q,Quaternion_p,temp); quatinv(Q,temp2); quatmultiply(temp,temp2,temp1); out_poin[0]=temp1[1]; out_poin[1]=temp1[2]; out_poin[2]=temp1[3]; } void Separate_G(float* soure_acc,const float* Q,float *NogAcc)//??????? { float temp[4]; float temp1[3]; quatconj2(Q,temp); quatrotate(soure_acc,temp,temp1);//????????????? // temp1[2]-=1;//??????? NogAcc[0] = temp1[0]; NogAcc[1] = temp1[1]; NogAcc[2] = temp1[2]; // quatrotate(temp1,Q,NogAcc);//????????????? } short acc_0[3]; short gyr_0[3]; long quat_0[4]; int32_t press_0; #define press_zero_offer 50000 static int32_t press_zero_0 = 0; static int32_t press_sub = 0; static int32_t press_sub_dt = 0; static uint32_t ble_timestamp = 0; static int32_t is_runnig = 0; float out_f[8]; static int32_t press_window_dt_val = 0; void press_filter_Increasing(int32_t val) { static int32_t press_last = 0; if(press_last=press_filter_slide_num) dex = 0; sum += val; return sum/press_filter_slide_num; } int32_t press_filter_dt(int32_t val) { static int32_t press_last = 0; int32_t sub = val - press_last; press_last = val; return sub; } int32_t press_dt(int32_t val) { static int32_t press_last = 0; int32_t sub = val - press_last; press_last = val; return sub; } int32_t press_window_dt(int32_t val) { #define press_window_len 15 int i; int32_t temp_max = 0; int32_t temp_min = 0; int temp_max_i = 0; int temp_min_i = 0; static int32_t press_window[press_window_len]; static int dex = 0; press_window[dex] = val; temp_max = press_window[0];temp_max_i = press_window_len-1-dex; temp_min = press_window[0];temp_min_i = press_window_len-1-dex; for(i=1;idex){ temp_max_i = i-1-dex; }else{ temp_max_i = press_window_len-1-(dex-i); } } if(temp_min>press_window[i]){ temp_min = press_window[i]; if(i>dex){ temp_min_i = i-1-dex; }else{ temp_min_i = press_window_len-1-(dex-i); } } } if(++dex>=press_window_len) dex = 0; if(temp_max_i>temp_min_i) return temp_max-temp_min; else return temp_min-temp_max; } int32_t accz_dt(short val) { static int32_t accz_last = 0; int32_t sub = abs(val - accz_last); accz_last = val; return sub; } int check_accy_stop(void) { #define accy_stop_num 20 static short buf[accy_stop_num]; static short dex = 0; int i; buf[dex] = acc_0[2]; if(++dex>=accy_stop_num) dex = 0; for(i=0;i500 || buf[i]<-500) return 1; } return 0; } int check_accz_stop(void) { #define accz_stop_num 20 static short buf[accz_stop_num]; static short dex = 0; int i; buf[dex] = acc_0[2]; if(++dex>=accz_stop_num) dex = 0; for(i=0;i500 || buf[i]<-500) return 1; } return 0; } void check_press_zero(int32_t val) { static int32_t press_zero_arr[300]; static int dex = 0; static int32_t press_zero_max = 0; static int32_t press_zero_min = 0; press_zero_arr[dex] = val; if(dex==0){ press_zero_max = press_zero_arr[dex]; press_zero_min = press_zero_arr[dex]; }else{ if(press_zero_maxpress_zero_arr[dex]) press_zero_min = press_zero_arr[dex]; } if(++dex>=300){dex = 0; // if(press_zero_max - press_zero_min<5000){ // if(press_zero_0==0){ // press_zero_0 = press_zero_max; // out[0] = press_zero_0; // }else if(press_zero_max2500){ send_ble_motion(MOTION_JUMP,ble_timestamp); } } if(sy_n>150000){ send_ble_motion(MOTION_RIGHT,ble_timestamp); cnt = 200; }else if(sy_n<-150000){ send_ble_motion(MOTION_LEFT,ble_timestamp); cnt = 200; }else{ cnt++; } }else{ vy_n = 0; sy_n = 0; } }else{ //在地上 if(is_runnig==0){ is_runnig = 1; send_ble_motion(MOTION_RUN,ble_timestamp); } cnt = 0; } } int32_t mean_value(int32_t* p,int len) { int32_t sum = 0; int i; for(i=0;i0){ window_val_arr[dex] = val/10000; window_press_arr[dex] = press_sub/10000; if(++dex>=500) dex = 0; out[2] = mean_value(window_val_arr,dex); out[3] = variance_value(window_val_arr,dex); linear_regression(window_press_arr,dex,&out_f[0],&out_f[1]); }else{ dex = 0; } } int32_t press_window_dt_dt(int32_t val) { static int32_t press_last = 0; int32_t sub = val - press_last; press_last = val; return sub; } void process_motion(void) { check_press_zero(press_0); if(press_zero_0==0) return; press_sub = press_0-press_zero_0; if(press_sub