/** * Copyright (c) 2015 - 2020, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #ifndef NRF_SPI_H__ #define NRF_SPI_H__ #include #ifdef __cplusplus extern "C" { #endif /** * @defgroup nrf_spi_hal SPI HAL * @{ * @ingroup nrf_spi * @brief Hardware access layer for managing the SPI peripheral. */ /** * @brief This value can be used as a parameter for the @ref nrf_spi_pins_set * function to specify that a given SPI signal (SCK, MOSI, or MISO) * shall not be connected to a physical pin. */ #define NRF_SPI_PIN_NOT_CONNECTED 0xFFFFFFFF /** @brief SPI events. */ typedef enum { NRF_SPI_EVENT_READY = offsetof(NRF_SPI_Type, EVENTS_READY) ///< TXD byte sent and RXD byte received. } nrf_spi_event_t; /** @brief SPI interrupts. */ typedef enum { NRF_SPI_INT_READY_MASK = SPI_INTENSET_READY_Msk, ///< Interrupt on READY event. NRF_SPI_ALL_INTS_MASK = SPI_INTENSET_READY_Msk ///< All SPI interrupts. } nrf_spi_int_mask_t; /** @brief SPI data rates. */ typedef enum { NRF_SPI_FREQ_125K = SPI_FREQUENCY_FREQUENCY_K125, ///< 125 kbps. NRF_SPI_FREQ_250K = SPI_FREQUENCY_FREQUENCY_K250, ///< 250 kbps. NRF_SPI_FREQ_500K = SPI_FREQUENCY_FREQUENCY_K500, ///< 500 kbps. NRF_SPI_FREQ_1M = SPI_FREQUENCY_FREQUENCY_M1, ///< 1 Mbps. NRF_SPI_FREQ_2M = SPI_FREQUENCY_FREQUENCY_M2, ///< 2 Mbps. NRF_SPI_FREQ_4M = SPI_FREQUENCY_FREQUENCY_M4, ///< 4 Mbps. // [conversion to 'int' needed to prevent compilers from complaining // that the provided value (0x80000000UL) is out of range of "int"] NRF_SPI_FREQ_8M = (int)SPI_FREQUENCY_FREQUENCY_M8 ///< 8 Mbps. } nrf_spi_frequency_t; /** @brief SPI modes. */ typedef enum { NRF_SPI_MODE_0, ///< SCK active high, sample on leading edge of clock. NRF_SPI_MODE_1, ///< SCK active high, sample on trailing edge of clock. NRF_SPI_MODE_2, ///< SCK active low, sample on leading edge of clock. NRF_SPI_MODE_3 ///< SCK active low, sample on trailing edge of clock. } nrf_spi_mode_t; /** @brief SPI bit orders. */ typedef enum { NRF_SPI_BIT_ORDER_MSB_FIRST = SPI_CONFIG_ORDER_MsbFirst, ///< Most significant bit shifted out first. NRF_SPI_BIT_ORDER_LSB_FIRST = SPI_CONFIG_ORDER_LsbFirst ///< Least significant bit shifted out first. } nrf_spi_bit_order_t; /** * @brief Function for clearing the specified SPI event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event to be cleared. */ __STATIC_INLINE void nrf_spi_event_clear(NRF_SPI_Type * p_reg, nrf_spi_event_t event); /** * @brief Function for retrieving the state of the SPI event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event to be checked. * * @retval true The event has been generated. * @retval false The event has not been generated. */ __STATIC_INLINE bool nrf_spi_event_check(NRF_SPI_Type * p_reg, nrf_spi_event_t event); /** * @brief Function for getting the address of the specified SPI event register. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event The specified event. * * @return Address of the specified event register. */ __STATIC_INLINE uint32_t * nrf_spi_event_address_get(NRF_SPI_Type * p_reg, nrf_spi_event_t event); /** * @brief Function for enabling the specified interrupts. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Mask of interrupts to be enabled. */ __STATIC_INLINE void nrf_spi_int_enable(NRF_SPI_Type * p_reg, uint32_t mask); /** * @brief Function for disabling the specified interrupts. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Mask of interrupts to be disabled. */ __STATIC_INLINE void nrf_spi_int_disable(NRF_SPI_Type * p_reg, uint32_t mask); /** * @brief Function for retrieving the state of a given interrupt. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] spi_int Interrupt to be checked. * * @retval true The interrupt is enabled. * @retval false The interrupt is not enabled. */ __STATIC_INLINE bool nrf_spi_int_enable_check(NRF_SPI_Type * p_reg, nrf_spi_int_mask_t spi_int); /** * @brief Function for enabling the SPI peripheral. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. */ __STATIC_INLINE void nrf_spi_enable(NRF_SPI_Type * p_reg); /** * @brief Function for disabling the SPI peripheral. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. */ __STATIC_INLINE void nrf_spi_disable(NRF_SPI_Type * p_reg); /** * @brief Function for configuring SPI pins. * * If a given signal is not needed, pass the @ref NRF_SPI_PIN_NOT_CONNECTED * value instead of its pin number. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] sck_pin SCK pin number. * @param[in] mosi_pin MOSI pin number. * @param[in] miso_pin MISO pin number. */ __STATIC_INLINE void nrf_spi_pins_set(NRF_SPI_Type * p_reg, uint32_t sck_pin, uint32_t mosi_pin, uint32_t miso_pin); /** * @brief Function for writing data to the SPI transmitter register. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] data TX data to send. */ __STATIC_INLINE void nrf_spi_txd_set(NRF_SPI_Type * p_reg, uint8_t data); /** * @brief Function for reading data from the SPI receiver register. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @return RX data received. */ __STATIC_INLINE uint8_t nrf_spi_rxd_get(NRF_SPI_Type * p_reg); /** * @brief Function for setting the SPI master data rate. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] frequency SPI frequency. */ __STATIC_INLINE void nrf_spi_frequency_set(NRF_SPI_Type * p_reg, nrf_spi_frequency_t frequency); /** * @brief Function for setting the SPI configuration. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] spi_mode SPI mode. * @param[in] spi_bit_order SPI bit order. */ __STATIC_INLINE void nrf_spi_configure(NRF_SPI_Type * p_reg, nrf_spi_mode_t spi_mode, nrf_spi_bit_order_t spi_bit_order); #ifndef SUPPRESS_INLINE_IMPLEMENTATION __STATIC_INLINE void nrf_spi_event_clear(NRF_SPI_Type * p_reg, nrf_spi_event_t event) { *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)) = 0x0UL; #if __CORTEX_M == 0x04 volatile uint32_t dummy = *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)); (void)dummy; #endif } __STATIC_INLINE bool nrf_spi_event_check(NRF_SPI_Type * p_reg, nrf_spi_event_t event) { return (bool)*(volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event); } __STATIC_INLINE uint32_t * nrf_spi_event_address_get(NRF_SPI_Type * p_reg, nrf_spi_event_t event) { return (uint32_t *)((uint8_t *)p_reg + (uint32_t)event); } __STATIC_INLINE void nrf_spi_int_enable(NRF_SPI_Type * p_reg, uint32_t mask) { p_reg->INTENSET = mask; } __STATIC_INLINE void nrf_spi_int_disable(NRF_SPI_Type * p_reg, uint32_t mask) { p_reg->INTENCLR = mask; } __STATIC_INLINE bool nrf_spi_int_enable_check(NRF_SPI_Type * p_reg, nrf_spi_int_mask_t spi_int) { return (bool)(p_reg->INTENSET & spi_int); } __STATIC_INLINE void nrf_spi_enable(NRF_SPI_Type * p_reg) { p_reg->ENABLE = (SPI_ENABLE_ENABLE_Enabled << SPI_ENABLE_ENABLE_Pos); } __STATIC_INLINE void nrf_spi_disable(NRF_SPI_Type * p_reg) { p_reg->ENABLE = (SPI_ENABLE_ENABLE_Disabled << SPI_ENABLE_ENABLE_Pos); } __STATIC_INLINE void nrf_spi_pins_set(NRF_SPI_Type * p_reg, uint32_t sck_pin, uint32_t mosi_pin, uint32_t miso_pin) { #if defined(SPI_PSEL_SCK_CONNECT_Pos) p_reg->PSEL.SCK = sck_pin; #else p_reg->PSELSCK = sck_pin; #endif #if defined(SPI_PSEL_MOSI_CONNECT_Pos) p_reg->PSEL.MOSI = mosi_pin; #else p_reg->PSELMOSI = mosi_pin; #endif #if defined(SPI_PSEL_MISO_CONNECT_Pos) p_reg->PSEL.MISO = miso_pin; #else p_reg->PSELMISO = miso_pin; #endif } __STATIC_INLINE void nrf_spi_txd_set(NRF_SPI_Type * p_reg, uint8_t data) { p_reg->TXD = data; } __STATIC_INLINE uint8_t nrf_spi_rxd_get(NRF_SPI_Type * p_reg) { return p_reg->RXD; } __STATIC_INLINE void nrf_spi_frequency_set(NRF_SPI_Type * p_reg, nrf_spi_frequency_t frequency) { p_reg->FREQUENCY = frequency; } __STATIC_INLINE void nrf_spi_configure(NRF_SPI_Type * p_reg, nrf_spi_mode_t spi_mode, nrf_spi_bit_order_t spi_bit_order) { uint32_t config = (spi_bit_order == NRF_SPI_BIT_ORDER_MSB_FIRST ? SPI_CONFIG_ORDER_MsbFirst : SPI_CONFIG_ORDER_LsbFirst); switch (spi_mode) { default: case NRF_SPI_MODE_0: config |= (SPI_CONFIG_CPOL_ActiveHigh << SPI_CONFIG_CPOL_Pos) | (SPI_CONFIG_CPHA_Leading << SPI_CONFIG_CPHA_Pos); break; case NRF_SPI_MODE_1: config |= (SPI_CONFIG_CPOL_ActiveHigh << SPI_CONFIG_CPOL_Pos) | (SPI_CONFIG_CPHA_Trailing << SPI_CONFIG_CPHA_Pos); break; case NRF_SPI_MODE_2: config |= (SPI_CONFIG_CPOL_ActiveLow << SPI_CONFIG_CPOL_Pos) | (SPI_CONFIG_CPHA_Leading << SPI_CONFIG_CPHA_Pos); break; case NRF_SPI_MODE_3: config |= (SPI_CONFIG_CPOL_ActiveLow << SPI_CONFIG_CPOL_Pos) | (SPI_CONFIG_CPHA_Trailing << SPI_CONFIG_CPHA_Pos); break; } p_reg->CONFIG = config; } #endif // SUPPRESS_INLINE_IMPLEMENTATION /** @} */ #ifdef __cplusplus } #endif #endif // NRF_SPI_H__