/** * Copyright (c) 2015 - 2020, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #ifndef NRF_PDM_H_ #define NRF_PDM_H_ #include #ifdef __cplusplus extern "C" { #endif /** * @defgroup nrf_pdm_hal PDM HAL * @{ * @ingroup nrf_pdm * @brief Hardware access layer for managing the Pulse Density Modulation (PDM) peripheral. */ /** @brief Minimum value of PDM gain. */ #define NRF_PDM_GAIN_MINIMUM 0x00 /** @brief Default value of PDM gain. */ #define NRF_PDM_GAIN_DEFAULT 0x28 /** @brief Maximum value of PDM gain. */ #define NRF_PDM_GAIN_MAXIMUM 0x50 /** @brief PDM gain type. */ typedef uint8_t nrf_pdm_gain_t; /** @brief PDM tasks. */ typedef enum { NRF_PDM_TASK_START = offsetof(NRF_PDM_Type, TASKS_START), ///< Starts continuous PDM transfer. NRF_PDM_TASK_STOP = offsetof(NRF_PDM_Type, TASKS_STOP) ///< Stops PDM transfer. } nrf_pdm_task_t; /** @brief PDM events. */ typedef enum { NRF_PDM_EVENT_STARTED = offsetof(NRF_PDM_Type, EVENTS_STARTED), ///< PDM transfer is started. NRF_PDM_EVENT_STOPPED = offsetof(NRF_PDM_Type, EVENTS_STOPPED), ///< PDM transfer is finished. NRF_PDM_EVENT_END = offsetof(NRF_PDM_Type, EVENTS_END) ///< The PDM has written the last sample specified by SAMPLE.MAXCNT (or the last sample after a STOP task has been received) to Data RAM. } nrf_pdm_event_t; /** @brief PDM interrupt masks. */ typedef enum { NRF_PDM_INT_STARTED = PDM_INTENSET_STARTED_Msk, ///< Interrupt on EVENTS_STARTED event. NRF_PDM_INT_STOPPED = PDM_INTENSET_STOPPED_Msk, ///< Interrupt on EVENTS_STOPPED event. NRF_PDM_INT_END = PDM_INTENSET_END_Msk ///< Interrupt on EVENTS_END event. } nrf_pdm_int_mask_t; /** @brief PDM clock frequency. */ typedef enum { NRF_PDM_FREQ_1000K = PDM_PDMCLKCTRL_FREQ_1000K, ///< PDM_CLK = 1.000 MHz. NRF_PDM_FREQ_1032K = PDM_PDMCLKCTRL_FREQ_Default, ///< PDM_CLK = 1.032 MHz. NRF_PDM_FREQ_1067K = PDM_PDMCLKCTRL_FREQ_1067K ///< PDM_CLK = 1.067 MHz. } nrf_pdm_freq_t; /** @brief PDM operation mode. */ typedef enum { NRF_PDM_MODE_STEREO = PDM_MODE_OPERATION_Stereo, ///< Sample and store one pair (Left + Right) of 16-bit samples per RAM word. NRF_PDM_MODE_MONO = PDM_MODE_OPERATION_Mono ///< Sample and store two successive Left samples (16 bit each) per RAM word. } nrf_pdm_mode_t; /** @brief PDM sampling mode. */ typedef enum { NRF_PDM_EDGE_LEFTFALLING = PDM_MODE_EDGE_LeftFalling, ///< Left (or mono) is sampled on falling edge of PDM_CLK. NRF_PDM_EDGE_LEFTRISING = PDM_MODE_EDGE_LeftRising ///< Left (or mono) is sampled on rising edge of PDM_CLK. } nrf_pdm_edge_t; /** * @brief Function for triggering a PDM task. * * @param[in] task PDM task. */ __STATIC_INLINE void nrf_pdm_task_trigger(nrf_pdm_task_t task); /** * @brief Function for getting the address of a PDM task register. * * @param[in] task PDM task. * * @return Address of the specified PDM task. */ __STATIC_INLINE uint32_t nrf_pdm_task_address_get(nrf_pdm_task_t task); /** * @brief Function for retrieving the state of the PDM event. * * @param[in] event Event to be checked. * * @retval true The event has been generated. * @retval false The event has not been generated. */ __STATIC_INLINE bool nrf_pdm_event_check(nrf_pdm_event_t event); /** * @brief Function for clearing a PDM event. * * @param[in] event PDM event. */ __STATIC_INLINE void nrf_pdm_event_clear(nrf_pdm_event_t event); /** * @brief Function for getting the address of a PDM event register. * * @param[in] event PDM event. * * @return Address of the specified PDM event. */ __STATIC_INLINE volatile uint32_t * nrf_pdm_event_address_get(nrf_pdm_event_t event); /** * @brief Function for enabling PDM interrupts. * * @param[in] int_mask Mask of interrupts to be enabled. */ __STATIC_INLINE void nrf_pdm_int_enable(uint32_t int_mask); /** * @brief Function for retrieving the state of PDM interrupts. * * @param[in] int_mask Mask of interrupts to be checked. * * @retval true All specified interrupts are enabled. * @retval false At least one of the given interrupts is not enabled. */ __STATIC_INLINE bool nrf_pdm_int_enable_check(uint32_t int_mask); /** * @brief Function for disabling interrupts. * * @param[in] int_mask Mask of interrupts to be disabled. */ __STATIC_INLINE void nrf_pdm_int_disable(uint32_t int_mask); #if defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__) /** * @brief Function for setting the subscribe configuration for a given * PDM task. * * @param[in] task Task for which to set the configuration. * @param[in] channel Channel through which to subscribe events. */ __STATIC_INLINE void nrf_pdm_subscribe_set(nrf_pdm_task_t task, uint8_t channel); /** * @brief Function for clearing the subscribe configuration for a given * PDM task. * * @param[in] task Task for which to clear the configuration. */ __STATIC_INLINE void nrf_pdm_subscribe_clear(nrf_pdm_task_t task); /** * @brief Function for setting the publish configuration for a given * PDM event. * * @param[in] event Event for which to set the configuration. * @param[in] channel Channel through which to publish the event. */ __STATIC_INLINE void nrf_pdm_publish_set(nrf_pdm_event_t event, uint8_t channel); /** * @brief Function for clearing the publish configuration for a given * PDM event. * * @param[in] event Event for which to clear the configuration. */ __STATIC_INLINE void nrf_pdm_publish_clear(nrf_pdm_event_t event); #endif // defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__) /** * @brief Function for enabling the PDM peripheral. * * The PDM peripheral must be enabled before use. */ __STATIC_INLINE void nrf_pdm_enable(void); /** @brief Function for disabling the PDM peripheral. */ __STATIC_INLINE void nrf_pdm_disable(void); /** * @brief Function for checking if the PDM peripheral is enabled. * * @retval true The PDM peripheral is enabled. * @retval false The PDM peripheral is not enabled. */ __STATIC_INLINE bool nrf_pdm_enable_check(void); /** * @brief Function for setting the PDM operation mode. * * @param[in] pdm_mode PDM operation mode. * @param[in] pdm_edge PDM sampling mode. */ __STATIC_INLINE void nrf_pdm_mode_set(nrf_pdm_mode_t pdm_mode, nrf_pdm_edge_t pdm_edge); /** * @brief Function for getting the PDM operation mode. * * @param[out] p_pdm_mode PDM operation mode. * @param[out] p_pdm_edge PDM sampling mode. */ __STATIC_INLINE void nrf_pdm_mode_get(nrf_pdm_mode_t * p_pdm_mode, nrf_pdm_edge_t * p_pdm_edge); /** * @brief Function for setting the PDM clock frequency. * * @param[in] pdm_freq PDM clock frequency. */ __STATIC_INLINE void nrf_pdm_clock_set(nrf_pdm_freq_t pdm_freq); /** * @brief Function for getting the PDM clock frequency. * * @return PDM clock frequency. */ __STATIC_INLINE nrf_pdm_freq_t nrf_pdm_clock_get(void); /** * @brief Function for setting up the PDM pins. * * @param[in] psel_clk CLK pin number. * @param[in] psel_din DIN pin number. */ __STATIC_INLINE void nrf_pdm_psel_connect(uint32_t psel_clk, uint32_t psel_din); /** @brief Function for disconnecting the PDM pins. */ __STATIC_INLINE void nrf_pdm_psel_disconnect(void); /** * @brief Function for setting the PDM gain. * * @param[in] gain_l Left channel gain. * @param[in] gain_r Right channel gain. */ __STATIC_INLINE void nrf_pdm_gain_set(nrf_pdm_gain_t gain_l, nrf_pdm_gain_t gain_r); /** * @brief Function for getting the PDM gain. * * @param[out] p_gain_l Left channel gain. * @param[out] p_gain_r Right channel gain. */ __STATIC_INLINE void nrf_pdm_gain_get(nrf_pdm_gain_t * p_gain_l, nrf_pdm_gain_t * p_gain_r); /** * @brief Function for setting the PDM sample buffer. * * The amount of allocated RAM depends on the operation mode. * - For stereo mode: N 32-bit words. * - For mono mode: Ceil(N/2) 32-bit words. * * @param[in] p_buffer Pointer to the RAM address where samples are to be written with EasyDMA. * @param[in] num Number of samples to allocate memory for in EasyDMA mode. */ __STATIC_INLINE void nrf_pdm_buffer_set(uint32_t * p_buffer, uint32_t num); /** * @brief Function for getting the current PDM sample buffer address. * * @return Pointer to the current sample buffer. */ __STATIC_INLINE uint32_t * nrf_pdm_buffer_get(void); #ifndef SUPPRESS_INLINE_IMPLEMENTATION __STATIC_INLINE void nrf_pdm_task_trigger(nrf_pdm_task_t task) { *((volatile uint32_t *)((uint8_t *)NRF_PDM + (uint32_t)task)) = 0x1UL; } __STATIC_INLINE uint32_t nrf_pdm_task_address_get(nrf_pdm_task_t task) { return (uint32_t)((uint8_t *)NRF_PDM + (uint32_t)task); } __STATIC_INLINE bool nrf_pdm_event_check(nrf_pdm_event_t event) { return (bool)*(volatile uint32_t *)((uint8_t *)NRF_PDM + (uint32_t)event); } __STATIC_INLINE void nrf_pdm_event_clear(nrf_pdm_event_t event) { *((volatile uint32_t *)((uint8_t *)NRF_PDM + (uint32_t)event)) = 0x0UL; #if __CORTEX_M == 0x04 volatile uint32_t dummy = *((volatile uint32_t *)((uint8_t *)NRF_PDM + (uint32_t)event)); (void)dummy; #endif } __STATIC_INLINE volatile uint32_t * nrf_pdm_event_address_get(nrf_pdm_event_t event) { return (volatile uint32_t *)((uint8_t *)NRF_PDM + (uint32_t)event); } __STATIC_INLINE void nrf_pdm_int_enable(uint32_t int_mask) { NRF_PDM->INTENSET = int_mask; } __STATIC_INLINE bool nrf_pdm_int_enable_check(uint32_t int_mask) { return (bool)(NRF_PDM->INTENSET & int_mask); } __STATIC_INLINE void nrf_pdm_int_disable(uint32_t int_mask) { NRF_PDM->INTENCLR = int_mask; } #if defined(DPPI_PRESENT) __STATIC_INLINE void nrf_pdm_subscribe_set(nrf_pdm_task_t task, uint8_t channel) { *((volatile uint32_t *) ((uint8_t *) NRF_PDM + (uint32_t) task + 0x80uL)) = ((uint32_t)channel | PDM_SUBSCRIBE_START_EN_Msk); } __STATIC_INLINE void nrf_pdm_subscribe_clear(nrf_pdm_task_t task) { *((volatile uint32_t *) ((uint8_t *) NRF_PDM + (uint32_t) task + 0x80uL)) = 0; } __STATIC_INLINE void nrf_pdm_publish_set(nrf_pdm_event_t event, uint8_t channel) { *((volatile uint32_t *) ((uint8_t *) NRF_PDM + (uint32_t) event + 0x80uL)) = ((uint32_t)channel | PDM_PUBLISH_STARTED_EN_Msk); } __STATIC_INLINE void nrf_pdm_publish_clear(nrf_pdm_event_t event) { *((volatile uint32_t *) ((uint8_t *) NRF_PDM + (uint32_t) event + 0x80uL)) = 0; } #endif // defined(DPPI_PRESENT) __STATIC_INLINE void nrf_pdm_enable(void) { NRF_PDM->ENABLE = (PDM_ENABLE_ENABLE_Enabled << PDM_ENABLE_ENABLE_Pos); } __STATIC_INLINE void nrf_pdm_disable(void) { NRF_PDM->ENABLE = (PDM_ENABLE_ENABLE_Disabled << PDM_ENABLE_ENABLE_Pos); } __STATIC_INLINE bool nrf_pdm_enable_check(void) { return (NRF_PDM->ENABLE == (PDM_ENABLE_ENABLE_Enabled << PDM_ENABLE_ENABLE_Pos)); } __STATIC_INLINE void nrf_pdm_mode_set(nrf_pdm_mode_t pdm_mode, nrf_pdm_edge_t pdm_edge) { NRF_PDM->MODE = ((pdm_mode << PDM_MODE_OPERATION_Pos) & PDM_MODE_OPERATION_Msk) | ((pdm_edge << PDM_MODE_EDGE_Pos) & PDM_MODE_EDGE_Msk); } __STATIC_INLINE void nrf_pdm_mode_get(nrf_pdm_mode_t * p_pdm_mode, nrf_pdm_edge_t * p_pdm_edge) { uint32_t mode = NRF_PDM->MODE; *p_pdm_mode = (nrf_pdm_mode_t)((mode & PDM_MODE_OPERATION_Msk ) >> PDM_MODE_OPERATION_Pos); *p_pdm_edge = (nrf_pdm_edge_t)((mode & PDM_MODE_EDGE_Msk ) >> PDM_MODE_EDGE_Pos); } __STATIC_INLINE void nrf_pdm_clock_set(nrf_pdm_freq_t pdm_freq) { NRF_PDM->PDMCLKCTRL = ((pdm_freq << PDM_PDMCLKCTRL_FREQ_Pos) & PDM_PDMCLKCTRL_FREQ_Msk); } __STATIC_INLINE nrf_pdm_freq_t nrf_pdm_clock_get(void) { return (nrf_pdm_freq_t) ((NRF_PDM->PDMCLKCTRL << PDM_PDMCLKCTRL_FREQ_Pos) & PDM_PDMCLKCTRL_FREQ_Msk); } __STATIC_INLINE void nrf_pdm_psel_connect(uint32_t psel_clk, uint32_t psel_din) { NRF_PDM->PSEL.CLK = psel_clk; NRF_PDM->PSEL.DIN = psel_din; } __STATIC_INLINE void nrf_pdm_psel_disconnect(void) { NRF_PDM->PSEL.CLK = ((PDM_PSEL_CLK_CONNECT_Disconnected << PDM_PSEL_CLK_CONNECT_Pos) & PDM_PSEL_CLK_CONNECT_Msk); NRF_PDM->PSEL.DIN = ((PDM_PSEL_DIN_CONNECT_Disconnected << PDM_PSEL_DIN_CONNECT_Pos) & PDM_PSEL_DIN_CONNECT_Msk); } __STATIC_INLINE void nrf_pdm_gain_set(nrf_pdm_gain_t gain_l, nrf_pdm_gain_t gain_r) { NRF_PDM->GAINL = gain_l; NRF_PDM->GAINR = gain_r; } __STATIC_INLINE void nrf_pdm_gain_get(nrf_pdm_gain_t * p_gain_l, nrf_pdm_gain_t * p_gain_r) { *p_gain_l = NRF_PDM->GAINL; *p_gain_r = NRF_PDM->GAINR; } __STATIC_INLINE void nrf_pdm_buffer_set(uint32_t * p_buffer, uint32_t num) { NRF_PDM->SAMPLE.PTR = (uint32_t)p_buffer; NRF_PDM->SAMPLE.MAXCNT = num; } __STATIC_INLINE uint32_t * nrf_pdm_buffer_get(void) { return (uint32_t *)NRF_PDM->SAMPLE.PTR; } #endif // SUPPRESS_INLINE_IMPLEMENTATION /** @} */ #ifdef __cplusplus } #endif #endif // NRF_PDM_H_