#include #include #include #include #include #define ZUPT_threshold 0.81 #define SIGMA 0.01 #define SIGMA_V 0.01 #define PI 3.1416 #define RUN 1 #define STAND 0 //当地的重力加速度 float g = 9.788f; float dt = 0.01f; float P[81], acc_n[3]; float Temporary_array1[9], Temporary_array2[9]; float K[27], P_prev[81], delta_x[9]; float C[9], C_prev[9]; float vel_n[3], pos_n[3]; float last_pos_n[3]; float pos_offset[3]; int frame_index = 0; int stand_num = 0; float gyr_norm_window[10]; float gyr_z_window[10]; float gyr_extreme[6]; float gyr_mean[3]; float num_peak; float acc_mean[3]; float gyrBias[3]; float last_gyr[3]; float last_acc[3]; float last_vel_n[3]; float accSum; float accSize; int press_data[10]; int ZUPT_STATUS; int HAS_RESULT; int IS_DOWN; int press_index; float acc_shoes[3]; float last_acc_shoes[3]; int last_move_index; int down_pass1; int down_pass2; float theta; //last_stage:0 为 走路状态; //last_stage:1 为 静止状态 int last_stage; unsigned int step_count; unsigned int step_distance; enum _CMD_MOTION{ MOTION_STOP = 0, MOTION_RUN = 1, MOTION_JUMP = 2, MOTION_DOWN = 3, MOTION_LEFT = 4, MOTION_RIGHT = 5, MOTION_FRONT = 6, MOTION_BACK = 7, }; void cal_step_data(void) { step_count = step_count + 1; float step_length = sqrt((last_pos_n[0] - pos_n[0])*(last_pos_n[0] - pos_n[0]) + (last_pos_n[1] - pos_n[1])*(last_pos_n[1] - pos_n[1])); if(step_length > 3.0f) { step_length = 1.5f; } step_distance = step_distance + (uint32_t)(step_length * 100.0f); } uint32_t get_step_count(void) { return step_count; } uint32_t get_step_length(void) { return step_distance; } void invert3x3(float * src, float * dst) { float det; /* Compute adjoint: */ dst[0] = +src[4] * src[8] - src[5] * src[7]; dst[1] = -src[1] * src[8] + src[2] * src[7]; dst[2] = +src[1] * src[5] - src[2] * src[4]; dst[3] = -src[3] * src[8] + src[5] * src[6]; dst[4] = +src[0] * src[8] - src[2] * src[6]; dst[5] = -src[0] * src[5] + src[2] * src[3]; dst[6] = +src[3] * src[7] - src[4] * src[6]; dst[7] = -src[0] * src[7] + src[1] * src[6]; dst[8] = +src[0] * src[4] - src[1] * src[3]; /* Compute determinant: */ det = src[0] * dst[0] + src[1] * dst[3] + src[2] * dst[6]; /* Multiply adjoint with reciprocal of determinant: */ det = 1.0f / det; dst[0] *= det; dst[1] *= det; dst[2] *= det; dst[3] *= det; dst[4] *= det; dst[5] *= det; dst[6] *= det; dst[7] *= det; dst[8] *= det; } void multiply3x3(float *a, float *b, float *dst) { dst[0] = a[0] * b[0] + a[1] * b[3] + a[2] * b[6]; dst[1] = a[0] * b[1] + a[1] * b[4] + a[2] * b[7]; dst[2] = a[0] * b[2] + a[1] * b[5] + a[2] * b[8]; dst[3] = a[3] * b[0] + a[4] * b[3] + a[5] * b[6]; dst[4] = a[3] * b[1] + a[4] * b[4] + a[5] * b[7]; dst[5] = a[3] * b[2] + a[4] * b[5] + a[5] * b[8]; dst[6] = a[6] * b[0] + a[7] * b[3] + a[8] * b[6]; dst[7] = a[6] * b[1] + a[7] * b[4] + a[8] * b[7]; dst[8] = a[6] * b[2] + a[7] * b[5] + a[8] * b[8]; } void multiply3x1(float *a, float *b, float *dst) { dst[0] = a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; dst[1] = a[3] * b[0] + a[4] * b[1] + a[5] * b[2]; dst[2] = a[6] * b[0] + a[7] * b[1] + a[8] * b[2]; } void init_attitude_matrix(float *C, float *acc) { float pitch = asin(-acc[0] / g); float roll = atan2(acc[1], acc[2]); float pitch_sin = sin(pitch); float pitch_cos = cos(pitch); float roll_sin = sin(roll); float roll_cos = cos(roll); C[0] = cos(pitch); C[1] = pitch_sin * roll_sin; C[2] = pitch_sin * roll_cos; C[4] = roll_cos; C[5] = -roll_sin; C[6] = -pitch_sin; C[7] = pitch_cos * roll_sin; C[8] = pitch_cos * roll_cos; } void reset_yaw_C(float *C) { float pitch = asin(-C[6]); float roll = atan2(C[7], C[8]); float pitch_sin = sin(pitch); float pitch_cos = cos(pitch); float roll_sin = sin(roll); float roll_cos = cos(roll); C[0] = pitch_cos; C[1] = pitch_sin * roll_sin; C[2] = pitch_sin * roll_cos; C[3] = 0.0; C[4] = roll_cos; C[5] = -roll_sin; } // F * P * F' void State_covariance_matrix_update(float *P, float *acc_n) { // P2 + P3*dt, P[3] = P[3] + P[6] * dt; P[4] = P[4] + P[7] * dt; P[5] = P[5] + P[8] * dt; P[12] = P[12] + P[15] * dt; P[13] = P[13] + P[16] * dt; P[14] = P[14] + P[17] * dt; P[21] = P[21] + P[24] * dt; P[22] = P[22] + P[25] * dt; P[23] = P[23] + P[26] * dt; //P4 + P7*dt, P[27] = P[27] + P[54] * dt; P[28] = P[28] + P[55] * dt; P[29] = P[29] + P[56] * dt; P[36] = P[36] + P[63] * dt; P[37] = P[37] + P[64] * dt; P[38] = P[38] + P[65] * dt; P[45] = P[45] + P[72] * dt; P[46] = P[46] + P[73] * dt; P[47] = P[47] + P[74] * dt; // P5 + P8*dt + dt*(P6 + P9*dt) P[30] = P[30] + P[57] * dt + dt * (P[33] + P[60] * dt); P[31] = P[31] + P[58] * dt + dt * (P[34] + P[61] * dt); P[32] = P[32] + P[59] * dt + dt * (P[35] + P[62] * dt); P[39] = P[39] + P[66] * dt + dt * (P[42] + P[69] * dt); P[40] = P[40] + P[67] * dt + dt * (P[43] + P[70] * dt); P[41] = P[41] + P[68] * dt + dt * (P[44] + P[71] * dt); P[48] = P[48] + P[75] * dt + dt * (P[51] + P[78] * dt); P[49] = P[49] + P[76] * dt + dt * (P[52] + P[79] * dt); P[50] = P[50] + P[77] * dt + dt * (P[53] + P[80] * dt); //P6 + P9*dt + matr*(P4 + P7*dt) P[33] = P[33] + P[60] * dt + acc_n[2] * dt * P[28] - acc_n[1] * dt * P[29]; P[34] = P[34] + P[61] * dt - acc_n[2] * dt * P[27] + acc_n[0] * dt * P[29]; P[35] = P[35] + P[62] * dt + acc_n[1] * dt * P[27] - acc_n[0] * dt * P[28]; P[42] = P[42] + P[69] * dt + acc_n[2] * dt * P[37] - acc_n[1] * dt * P[38]; P[43] = P[43] + P[70] * dt - acc_n[2] * dt * P[36] + acc_n[0] * dt * P[38]; P[44] = P[44] + P[71] * dt + acc_n[1] * dt * P[36] - acc_n[0] * dt * P[37]; P[51] = P[51] + P[78] * dt + acc_n[2] * dt * P[46] - acc_n[1] * dt * P[47]; P[52] = P[52] + P[79] * dt - acc_n[2] * dt * P[45] + acc_n[0] * dt * P[47]; P[53] = P[53] + P[80] * dt + acc_n[1] * dt * P[45] - acc_n[0] * dt * P[46]; //P7 + P1*matr P[54] = P[54] + P[9] * acc_n[2] * dt - P[18] * acc_n[1] * dt; P[55] = P[55] + P[10] * acc_n[2] * dt - P[19] * acc_n[1] * dt; P[56] = P[56] + P[11] * acc_n[2] * dt - P[20] * acc_n[1] * dt; P[63] = P[63] - P[0] * acc_n[2] * dt + P[18] * acc_n[0] * dt; P[64] = P[64] - P[1] * acc_n[2] * dt + P[19] * acc_n[0] * dt; P[65] = P[65] - P[2] * acc_n[2] * dt + P[20] * acc_n[0] * dt; P[72] = P[72] + P[0] * acc_n[1] * dt - P[9] * acc_n[0] * dt; P[73] = P[73] + P[1] * acc_n[1] * dt - P[10] * acc_n[0] * dt; P[74] = P[74] + P[2] * acc_n[1] * dt - P[11] * acc_n[0] * dt; //P8 + P2*matr + dt*(P9 + P3*matr), P[57] = P[57] + dt * P[60] + P[12] * acc_n[2] * dt - P[21] * acc_n[1] * dt; P[58] = P[58] + dt * P[61] + P[13] * acc_n[2] * dt - P[22] * acc_n[1] * dt; P[59] = P[59] + dt * P[62] + P[14] * acc_n[2] * dt - P[23] * acc_n[1] * dt; P[66] = P[66] + dt * P[69] - P[3] * acc_n[2] * dt + P[21] * acc_n[0] * dt; P[67] = P[67] + dt * P[70] - P[4] * acc_n[2] * dt + P[22] * acc_n[0] * dt; P[68] = P[68] + dt * P[71] - P[5] * acc_n[2] * dt + P[23] * acc_n[0] * dt; P[75] = P[75] + dt * P[78] + P[3] * acc_n[1] * dt - P[12] * acc_n[0] * dt; P[76] = P[76] + dt * P[79] + P[4] * acc_n[1] * dt - P[13] * acc_n[0] * dt; P[77] = P[77] + dt * P[80] + P[5] * acc_n[1] * dt - P[14] * acc_n[0] * dt; // P9 + P3*matr + matr*(P7 + P1*matr) P[60] = P[60] + P[15] * acc_n[2] * dt - P[24] * acc_n[1] * dt + acc_n[2] * dt * P[55] - acc_n[1] * dt * P[56]; P[61] = P[61] + P[16] * acc_n[2] * dt - P[25] * acc_n[1] * dt - acc_n[2] * dt * P[54] + acc_n[0] * dt * P[56]; P[62] = P[62] + P[17] * acc_n[2] * dt - P[26] * acc_n[1] * dt + acc_n[1] * dt * P[54] - acc_n[0] * dt * P[55]; P[69] = P[69] - P[6] * acc_n[2] * dt + P[24] * acc_n[0] * dt + acc_n[2] * dt * P[64] - acc_n[1] * dt * P[65]; P[70] = P[70] - P[7] * acc_n[2] * dt + P[25] * acc_n[0] * dt - acc_n[2] * dt * P[63] + acc_n[0] * dt * P[65]; P[71] = P[71] - P[8] * acc_n[2] * dt + P[26] * acc_n[0] * dt + acc_n[1] * dt * P[63] - acc_n[0] * dt * P[64]; P[78] = P[78] + P[6] * acc_n[1] * dt - P[15] * acc_n[0] * dt + acc_n[2] * dt * P[73] - acc_n[1] * dt * P[74]; P[79] = P[79] + P[7] * acc_n[1] * dt - P[16] * acc_n[0] * dt - acc_n[2] * dt * P[72] + acc_n[0] * dt * P[74]; P[80] = P[80] + P[8] * acc_n[1] * dt - P[17] * acc_n[0] * dt + acc_n[1] * dt * P[72] - acc_n[0] * dt * P[73]; //P3 + P1 * matr P[6] = P[6] + P[1] * acc_n[2] * dt - P[2] * acc_n[1] * dt; P[7] = P[7] - P[0] * acc_n[2] * dt + P[2] * acc_n[0] * dt; P[8] = P[8] + P[0] * acc_n[1] * dt - P[1] * acc_n[0] * dt; P[15] = P[15] + P[10] * acc_n[2] * dt - P[11] * acc_n[1] * dt; P[16] = P[16] - P[9] * acc_n[2] * dt + P[11] * acc_n[0] * dt; P[17] = P[17] + P[9] * acc_n[1] * dt - P[10] * acc_n[0] * dt; P[24] = P[24] + P[19] * acc_n[2] * dt - P[20] * acc_n[1] * dt; P[25] = P[25] - P[18] * acc_n[2] * dt + P[20] * acc_n[0] * dt; P[26] = P[26] + P[18] * acc_n[1] * dt - P[19] * acc_n[0] * dt; float noise = SIGMA * SIGMA * dt *dt; for (int i = 0; i < 9; i++) { P[i * 9 + i] += noise; } } void Kalfman_gain(float *P, float *Temporary_array, float *Temporary_array1, float *K) { Temporary_array[0] = P[60] + SIGMA_V * SIGMA_V * 0.01f; Temporary_array[1] = P[61]; Temporary_array[2] = P[62]; Temporary_array[3] = P[69]; Temporary_array[4] = P[70] + SIGMA_V * SIGMA_V * 0.01f; Temporary_array[5] = P[71]; Temporary_array[6] = P[78]; Temporary_array[7] = P[79]; Temporary_array[8] = P[80] + SIGMA_V * SIGMA_V * 0.01f; invert3x3(Temporary_array, Temporary_array1); memcpy(Temporary_array, Temporary_array1, 9 * sizeof(float)); K[0] = P[6] * Temporary_array[0] + P[7] * Temporary_array[3] + P[8] * Temporary_array[6]; K[1] = P[6] * Temporary_array[1] + P[7] * Temporary_array[4] + P[8] * Temporary_array[7]; K[2] = P[6] * Temporary_array[2] + P[7] * Temporary_array[5] + P[8] * Temporary_array[8]; K[3] = P[15] * Temporary_array[0] + P[16] * Temporary_array[3] + P[17] * Temporary_array[6]; K[4] = P[15] * Temporary_array[1] + P[16] * Temporary_array[4] + P[17] * Temporary_array[7]; K[5] = P[15] * Temporary_array[2] + P[16] * Temporary_array[5] + P[17] * Temporary_array[8]; K[6] = P[24] * Temporary_array[0] + P[25] * Temporary_array[3] + P[26] * Temporary_array[6]; K[7] = P[24] * Temporary_array[1] + P[25] * Temporary_array[4] + P[26] * Temporary_array[7]; K[8] = P[24] * Temporary_array[2] + P[25] * Temporary_array[5] + P[26] * Temporary_array[8]; K[9] = P[33] * Temporary_array[0] + P[34] * Temporary_array[3] + P[35] * Temporary_array[6]; K[10] = P[33] * Temporary_array[1] + P[34] * Temporary_array[4] + P[35] * Temporary_array[7]; K[11] = P[33] * Temporary_array[2] + P[34] * Temporary_array[5] + P[35] * Temporary_array[8]; K[12] = P[42] * Temporary_array[0] + P[43] * Temporary_array[3] + P[44] * Temporary_array[6]; K[13] = P[42] * Temporary_array[1] + P[43] * Temporary_array[4] + P[44] * Temporary_array[7]; K[14] = P[42] * Temporary_array[2] + P[43] * Temporary_array[5] + P[44] * Temporary_array[8]; K[15] = P[51] * Temporary_array[0] + P[52] * Temporary_array[3] + P[53] * Temporary_array[6]; K[16] = P[51] * Temporary_array[1] + P[52] * Temporary_array[4] + P[53] * Temporary_array[7]; K[17] = P[51] * Temporary_array[2] + P[52] * Temporary_array[5] + P[53] * Temporary_array[8]; K[18] = P[60] * Temporary_array[0] + P[61] * Temporary_array[3] + P[62] * Temporary_array[6]; K[19] = P[60] * Temporary_array[1] + P[61] * Temporary_array[4] + P[62] * Temporary_array[7]; K[20] = P[60] * Temporary_array[2] + P[61] * Temporary_array[5] + P[62] * Temporary_array[8]; K[21] = P[69] * Temporary_array[0] + P[70] * Temporary_array[3] + P[71] * Temporary_array[6]; K[22] = P[69] * Temporary_array[1] + P[70] * Temporary_array[4] + P[71] * Temporary_array[7]; K[23] = P[69] * Temporary_array[2] + P[70] * Temporary_array[5] + P[71] * Temporary_array[8]; K[24] = P[78] * Temporary_array[0] + P[79] * Temporary_array[3] + P[80] * Temporary_array[6]; K[25] = P[78] * Temporary_array[1] + P[79] * Temporary_array[4] + P[80] * Temporary_array[7]; K[26] = P[78] * Temporary_array[2] + P[79] * Temporary_array[5] + P[80] * Temporary_array[8]; } void multiply9x3(float *K, float *vel_n, float* delta_x) { int i = 0; for (i = 0; i < 9; i++) { delta_x[i] = K[i * 3] * vel_n[0] + K[i * 3 + 1] * vel_n[1] + K[i * 3 + 2] * vel_n[2]; } } void State_covariance_matrix_corr(float *P, float *P_tmp, float *K) { int i = 0; int j = 0; for (i = 0; i < 9; i++) { for (j = 0; j < 9; j++) { P_tmp[i * 9 + j] = P[i * 9 + j] - K[3 * i] * P[54 + j] - K[3 * i + 1] * P[63 + j] - K[3 * i + 2] * P[72 + j]; } } memcpy(P, P_tmp, 81 * sizeof(float)); } void Att_matrix_corr(float *C, float *C_prev, float *Temporary_array, float *Temporary_array1, float *delta_x) { Temporary_array[0] = 2.0; Temporary_array[1] = -delta_x[2]; Temporary_array[2] = delta_x[1]; Temporary_array[3] = delta_x[2]; Temporary_array[4] = 2.0; Temporary_array[5] = -delta_x[0]; Temporary_array[6] = -delta_x[1]; Temporary_array[7] = delta_x[0]; Temporary_array[8] = 2.0; invert3x3(Temporary_array, Temporary_array1); Temporary_array[0] = 2.0; Temporary_array[1] = delta_x[2]; Temporary_array[2] = -delta_x[1]; Temporary_array[3] = -delta_x[2]; Temporary_array[4] = 2.0; Temporary_array[5] = delta_x[0]; Temporary_array[6] = delta_x[1]; Temporary_array[7] = -delta_x[0]; Temporary_array[8] = 2.0; multiply3x3(Temporary_array, Temporary_array1, C_prev); memcpy(Temporary_array, C_prev, 9 * sizeof(float)); multiply3x3(Temporary_array, C, C_prev); memcpy(C, C_prev, 9 * sizeof(float)); } void pos_n_corr(float *pos_n, float *delta_x) { pos_n[0] -= delta_x[3]; pos_n[1] -= delta_x[4]; pos_n[2] -= delta_x[5]; } void vel_n_corr(float *vel_n, float *delta_x) { vel_n[0] -= delta_x[6]; vel_n[1] -= delta_x[7]; vel_n[2] -= delta_x[8]; } void State_covariance_matrix_orthogonalization(float *P) { int i = 0; int j = 0; float temp; for (i = 0; i < 9; i++) for (j = i + 1; j < 9; j++) { temp = 0.5f*(P[i * 9 + j] + P[j * 9 + i]); P[i * 9 + j] = temp; P[j * 9 + i] = temp; } } void Initialize(float *gyr, float *acc) { frame_index = 1; stand_num = 0; accSize = 1.0f; accSum = 0.0f; ZUPT_STATUS = 0; HAS_RESULT = 0; memset(last_pos_n, 0, 3 * sizeof(float)); memset(pos_offset, 0, 3 * sizeof(float)); memset(gyr_norm_window, 0, 10 * sizeof(float)); memset(gyr_z_window, 0, 10 * sizeof(float)); memset(P, 0, 81 * sizeof(float)); memset(acc_n, 0, 3 * sizeof(float)); memset(vel_n, 0, 3 * sizeof(float)); memset(pos_n, 0, 3 * sizeof(float)); memset(Temporary_array1, 0, 9 * sizeof(float)); memset(Temporary_array2, 0, 9 * sizeof(float)); memset(K, 0, 27 * sizeof(float)); memset(P_prev, 0, 81 * sizeof(float)); memset(delta_x, 0, 9 * sizeof(float)); memset(C, 0, 9 * sizeof(float)); memset(Temporary_array1, 0, 9 * sizeof(float)); memset(Temporary_array2, 0, 9 * sizeof(float)); memset(press_data, 0, 10 * sizeof(int)); init_attitude_matrix(C, acc); memcpy(C_prev, C, 9 * sizeof(float)); } void attitude_matrix_update(float *C, float *Temporary_array1, float *Temporary_array2, float *gyr, float dt) { Temporary_array1[0] = 2.0f; Temporary_array1[1] = dt * gyr[2]; Temporary_array1[2] = -dt * gyr[1]; Temporary_array1[3] = -dt * gyr[2]; Temporary_array1[4] = 2.0f; Temporary_array1[5] = dt * gyr[0]; Temporary_array1[6] = dt * gyr[1]; Temporary_array1[7] = -dt * gyr[0]; Temporary_array1[8] = 2.0f; invert3x3(Temporary_array1, Temporary_array2); memset(Temporary_array1, 0, 9 * sizeof(float)); Temporary_array1[0] = 2 * C[0] + C[1] * dt * gyr[2] - C[2] * dt * gyr[1]; Temporary_array1[1] = 2 * C[1] - C[0] * dt * gyr[2] + C[2] * dt * gyr[0]; Temporary_array1[2] = 2 * C[2] + C[0] * dt * gyr[1] - C[1] * dt * gyr[0]; Temporary_array1[3] = 2 * C[3] + C[4] * dt * gyr[2] - C[5] * dt * gyr[1]; Temporary_array1[4] = 2 * C[4] - C[3] * dt * gyr[2] + C[5] * dt * gyr[0]; Temporary_array1[5] = 2 * C[5] + C[3] * dt * gyr[1] - C[4] * dt * gyr[0]; Temporary_array1[6] = 2 * C[6] + C[7] * dt * gyr[2] - C[8] * dt * gyr[1]; Temporary_array1[7] = 2 * C[7] - C[6] * dt * gyr[2] + C[8] * dt * gyr[0]; Temporary_array1[8] = 2 * C[8] + C[6] * dt * gyr[1] - C[7] * dt * gyr[0]; multiply3x3(Temporary_array1, Temporary_array2, C); } float max_window_val(float *window, int window_size) { float val = window[0]; for (int i = 0; i < window_size; i++) { if (window[i] > val) val = window[i]; } return val; } int max_window_int(int *window, int window_size) { int val = window[0]; for (int i = 0; i < window_size; i++) { if (window[i] > val) val = window[i]; } return val; } float min_window_val(float *window, int window_size) { float val = window[0]; for (int i = 0; i < window_size; i++) { if (window[i] < val) val = window[i]; } return val; } int min_window_int(int *window, int window_size) { int val = window[0]; for (int i = 0; i < window_size; i++) { if (window[i] < val) val = window[i]; } return val; } //press_tren 函数功能:提供走路过程中上升沿,下降沿 //1 为上升 2 为 下降 0为不需要得状态 int press_trend(int index ,int *window, int window_size) { int i; int max_val = window[(index - 1) % window_size]; int max_index = index; int min_val = max_val; int min_index = max_index; for(i = 1; i < window_size + 1; i++) { if(max_val < window[(index - i) % window_size]) { max_index = index - i + 1; max_val = window[(index - i) % window_size]; } if(min_val > window[(index - i) % window_size]) { min_index = index - i + 1; min_val = window[(index - i) % window_size]; } } if(max_index > min_index && max_val > min_val + 50000) { return 1; } if(max_index < min_index && max_val > min_val + 50000) { return 2; } return 0; } unsigned char footPDR(int num, float *gyr, float *acc, int press, short* pos_res, short* angle_data) { unsigned char movement_e = 0; for (int i = 0; i < 3; i++) { gyr[i] *= (PI / 180); acc[i] *= g; } if(num_peak == 0) { for(int i = 0; i < 3; i++) { gyr_extreme[2 * i] = gyr[i]; gyr_extreme[2 * i + 1] = gyr[i]; } } for (int i = 0; i < 3; i++) { if (gyr[i] < gyr_extreme[2 * i]) { gyr_extreme[2 * i] = gyr[i]; } if (gyr[i] > gyr_extreme[2 * i + 1]) { gyr_extreme[2 * i + 1] = gyr[i]; } } accSum += sqrt(acc[0] * acc[0] + acc[1] * acc[1] + acc[2] * acc[2]); for (int i = 0; i < 3; i++) { gyr_mean[i] += gyr[i]; } num_peak++; if (num_peak > 500) { if (gyr_extreme[1] - gyr_extreme[0] < 0.005f && gyr_extreme[3] - gyr_extreme[2] < 0.005f && gyr_extreme[5] - gyr_extreme[4] < 0.005f) { gyrBias[0] = gyr_mean[0] / num_peak; gyrBias[1] = gyr_mean[1] / num_peak; gyrBias[2] = gyr_mean[2] / num_peak; accSize = g * num_peak /accSum; } num_peak = 0; accSum = 0.0f; memset(gyr_mean, 0, 3 * sizeof(float)); } gyr[0] -= gyrBias[0]; gyr[1] -= gyrBias[1]; gyr[2] -= (gyrBias[2]); acc[0] *= accSize; acc[1] *= accSize; acc[2] *= accSize; float gyr_norm_xyz = sqrt(gyr[0]*gyr[0] + gyr[1]*gyr[1] + gyr[2]*gyr[2]); //需要一个滑动窗口来判断脚步是否在地上 frame_index++; //下面为惯导解算 if (num == 1) { Initialize(gyr, acc); return movement_e; } //惯导解算拆分为5次迭代,缓解高量程下由于采样率过导致惯导解算有错 //插值法 float gyr_temp[3]; float acc_temp[3]; gyr_temp[0] = gyr[0] - last_gyr[0]; gyr_temp[1] = gyr[1] - last_gyr[1]; gyr_temp[2] = gyr[2] - last_gyr[2]; acc_temp[0] = acc[0] - last_acc[0]; acc_temp[1] = acc[1] - last_acc[1]; acc_temp[2] = acc[2] - last_acc[2]; for(int i = 1; i < 6; i++) { last_gyr[0] += 0.2f * gyr_temp[0]; last_gyr[1] += 0.2f * gyr_temp[1]; last_gyr[2] += 0.2f * gyr_temp[2]; last_acc[0] += 0.2f * acc_temp[0]; last_acc[1] += 0.2f * acc_temp[1]; last_acc[2] += 0.2f * acc_temp[2]; attitude_matrix_update(C, Temporary_array1, Temporary_array2, last_gyr, 0.2f*dt); multiply3x1(C, last_acc, acc_n); vel_n[0] = last_vel_n[0] + acc_n[0] * dt * 0.2f; vel_n[1] = last_vel_n[1] + acc_n[1] * dt * 0.2f; vel_n[2] = last_vel_n[2] + (acc_n[2] - g) * dt * 0.2f; pos_n[0] = pos_n[0] + (vel_n[0] + last_vel_n[0]) * dt * 0.1f; pos_n[1] = pos_n[1] + (vel_n[1] + last_vel_n[1]) * dt * 0.1f; pos_n[2] = pos_n[2] + (vel_n[2] + last_vel_n[2]) * dt * 0.1f; memcpy(last_vel_n, vel_n, 3 * sizeof(float)); } // attitude_matrix_update(C, Temporary_array1, Temporary_array2, gyr, dt); // multiply3x1(C, acc, acc_n); // vel_n[0] = vel_n[0] + acc_n[0] * dt; // vel_n[1] = vel_n[1] + acc_n[1] * dt; // vel_n[2] = vel_n[2] + (acc_n[2] - g) * dt; // pos_n[0] = pos_n[0] + vel_n[0] * dt; // pos_n[1] = pos_n[1] + vel_n[1] * dt; // pos_n[2] = pos_n[2] + vel_n[2] * dt; memcpy(last_gyr, gyr, 3 * sizeof(float)); memcpy(last_acc, acc, 3 * sizeof(float)); //P = F*P*F' + Q; State_covariance_matrix_update(P, acc_n); int window_index = (frame_index - 1) % 10; float gyr_norm_xz = sqrt(gyr[0] * gyr[0] + gyr[1] * gyr[1] +gyr[2] * gyr[2]); gyr_norm_window[window_index] = gyr_norm_xz; press_data[window_index] = press; //当press_trend函数返回是1,判断为踩地上 // 返回2 的时候,判断为离地 // 返回0 的时候,需要保持状态 int press_trend_val = press_trend(frame_index, press_data, 10); if(press_trend_val == 1) { ZUPT_STATUS = 1; } else if(press_trend_val == 2) { ZUPT_STATUS = 2; } //RUN_ZUPT mean detect on floor when running int RUN_ZUPT = 0; if((frame_index > 10 && ZUPT_STATUS == 1)) RUN_ZUPT = 1; //STAND_ZUPT mean detect on floor when no any moving int STAND_ZUPT = 0; if((frame_index > 15 && gyr_norm_window[window_index] < 0.35f && fabs(min_window_val(gyr_norm_window, 10) - max_window_val(gyr_norm_window, 10)) < 0.1f)) STAND_ZUPT = 1; //zupt if (STAND_ZUPT ||(RUN_ZUPT)) { //计算一步的距离及步数+1 if(last_stage == 0) { cal_step_data(); } stand_num = stand_num + 1; //K = P*H'/(H*P*H' + R); Kalfman_gain(P, Temporary_array1, Temporary_array2, K); //delta_x = K * [vel_n(:,i);]; multiply9x3(K, vel_n, delta_x); State_covariance_matrix_corr(P, P_prev, K); //这里先从设置 delta_x(3) = atan2(C(2,1),C(1,1)); //意味着每一步的参考方向是IMU X轴方向 delta_x[2] = atan2(C[3], C[0]); // theta = -1.7801 + atan2(C[3], C[0]); theta = 0.0f; Att_matrix_corr(C, C_prev, Temporary_array1, Temporary_array2, delta_x); pos_n_corr(pos_n, delta_x); vel_n_corr(vel_n, delta_x); memset(vel_n, 0, 3*sizeof(float)); last_pos_n[0] = pos_n[0]; last_pos_n[1] = pos_n[1]; last_pos_n[2] = pos_n[2]; HAS_RESULT = 1; last_stage = 1; } else { stand_num = 0; last_stage = 0; } State_covariance_matrix_orthogonalization(P); memcpy(last_vel_n, vel_n, 3 * sizeof(float)); /*theta = -0.61; temp = [cos(theta), sin(theta); -sin(theta), cos(theta)]; pos_temp = temp * [pos_result(1); pos_result(2)]; pos_result(1) = pos_temp(1); pos_result(2) = pos_temp(2);*/ float pos_offset_temp0 = pos_n[0] - last_pos_n[0]; float pos_offset_temp1 = pos_n[1] - last_pos_n[1]; float pos_offset_temp2 = pos_n[2] - last_pos_n[2]; // pos_offset[0] = cos(theta) * pos_offset_temp0 + sin(theta) * pos_offset_temp1; // pos_offset[1] = -sin(theta) * pos_offset_temp0+ cos(theta) * pos_offset_temp1; pos_offset[0] = pos_offset_temp0; pos_offset[1] = pos_offset_temp1; pos_offset[2] = pos_offset_temp2; // memcpy(pos_res, acc_n, 3 * sizeof(float)); if(HAS_RESULT == 1 && pos_offset[0] > 0.2f) { movement_e = 1; HAS_RESULT = 0; } // angle_data[0] = (short) (asin(-C[6]) * 10000.f); //pitch // angle_data[1] = (short) (atan2(C[7], C[8]) * 10000.f); //roll // angle_data[2] = (short) (atan2(C[3], C[0]) * 10000.f); //yaw pos_res[0] = (short) (pos_offset[0] * 100.0f); pos_res[1] = (short) (pos_offset[1] * 100.0f); pos_res[2] = (short) (pos_offset[2] * 100.0f); return movement_e; }