jianboliang d19355a27e basic reserse dir 4 anni fa
..
FootRight8_CalInertialAndMag.csv d19355a27e basic reserse dir 4 anni fa
LoggedData1_CalInertialAndMag.csv d19355a27e basic reserse dir 4 anni fa
LoggedData2_CalInertialAndMag.csv d19355a27e basic reserse dir 4 anni fa
LoggedData3.csv d19355a27e basic reserse dir 4 anni fa
LoggedData_CalInertialAndMag.csv d19355a27e basic reserse dir 4 anni fa
README.md d19355a27e basic reserse dir 4 anni fa
SixDofAnimation.m d19355a27e basic reserse dir 4 anni fa
compVq.m d19355a27e basic reserse dir 4 anni fa
main.m d19355a27e basic reserse dir 4 anni fa
new_scipt.m d19355a27e basic reserse dir 4 anni fa
orien.m d19355a27e basic reserse dir 4 anni fa
plot_result.m d19355a27e basic reserse dir 4 anni fa
result.txt d19355a27e basic reserse dir 4 anni fa
test.m d19355a27e basic reserse dir 4 anni fa
zupt.m d19355a27e basic reserse dir 4 anni fa

README.md

ImuFusion

EKF IMU Fusion Algorithms

  1. orien.m uses Kalman filter for fusing the gyroscope's and accelerometer's readings to get the IMU's attitude(quaternion).
  2. zupt.m implenments the so called 'zero-velocity-update' algorithm for pedestrian tracking(gait tracking), it's also a ekf filter.
  3. Video: http://v.youku.com/v_show/id_XMTg2NjI4NTI4NA==.html

Usage

Example data already included.
Simply run the orien.m or zupt.m. For zupt, set 'CreateVideo' as true if you'd like to save the results as a video.
Note that the datasets and the code for visualizing the results were from: https://github.com/xioTechnologies/Gait-Tracking-With-x-IMU

References:

[1] S. Madgwick. An efficient orientation filter for inertial and inertial/magnetic sensor arrays.
[2] Fischer C, et. Implementing a Pedestrian Tracker Using inertial Sensors.
[3] Isaac Skog, et. Zero-Velocity Detection — An Algorithm Evaluation.